Capacity Credit of Wind, Wave and Solar Photovoltaic

Final Project Presentation

Julia Fernández Chozas

December 2015

JULIA F. CHOZAS
CONSULTING ENGINEER

Security of Supply

System planning is the process that assures security of supply: ability for the system to meet peak demand even under the most extreme condition.

Production

Demand

In adequacy forecasts each power plant is assigned a capacity credit.

December 2015

Security of Supply

System planning is the process that assures security of supply: ability for the system to meet peak demand even under the most extreme condition.

Production

In adequacy forecasts each power plant is assigned a capacity credit.

December 2015

Capacity Credit

- It evaluates the contribution that a generation unit can make to system reliability.
- It is calculated as the "amount of power renewable energies can reliably be expected to produce at the times when demand for electricity is highest" [IEA], usually, during the 10 to 100 highest consumption hours during a year.
- It is expressed as a % of the installed capacity of the generators. A value of 100% denotes one-for-one substitution with no loss of system reliability and 0% indicates that the RE source can displace no conventional capacity.

December 2015

Goal of the project

- Enhance the understanding of capacity credit when renewable energy sources are a big part in the electricity generation mix
- Investigate and Propose a new methodology for evaluating the capacity credit of renewable energy sources

December 2015

Conclusions (I)

- In order to meet year 2035 fossil-free goals, Denmark has set ambitious renewable energy targets, where:
 - Offshore and onshore wind increases significantly
 - Only small amount of solar PV are projected
 - No wave power

However, based on our findings...

- The benefits of a RES generation mix for Denmark with the 4 RES are higher than in a wind-dominated system, due to:
 - Low correlation between solar PV production and wave or wind production,
 - Average delay between waves and winds of 1 to 4 hours,
 - Higher correlation of solar PV and onshore wind with classical electricity demand

December 2015 6

Conclusions (II)

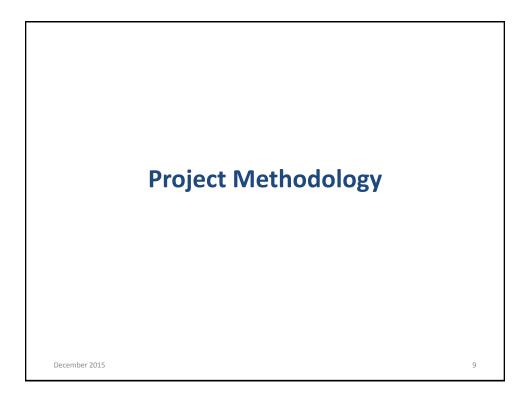
- ENTSO-E assumes Capacity Credit of RES = 0

But, based on year 2013 hourly data,

- We have proved RES have a positive capacity credit:
 - Daily average in worst periods:

CC_{REmix} = 3% - 27% in an electricity-only system CC_{REmix} = 3% - 70% in an integrated energy system

- Monthly average in worst periods: CC_{REmix} = 15%-30%
- With current capacity factors, the more offshore wind and wave in the system, the higher CC_{REmix}. The opposite is true for onshore wind and solar PV.
- Overall, RES technology developments will come along with higher contribution of RES to system adequacy.


December 2015

7

Our Recommendations for TSOs

- Due to the big differences between worst periods and peakdemand periods, we recommend to investigate RE production throughout key time periods during a year, including: worst period, peak-demand periods, high RES periods and best periods.
- Examine RE production in different time spans: intraday, intraweek, intermonth and seasonally; taking into account intradaily and daily averages in consumption. Important as peak demand hours will be shifted to hours where demand is low or RE production is high.
- Assess the contribution of RES in integrated energy systems, where the electricity, transport, heat and industry sector are merged, and not only according to classical electricity consumption.
- Open up the discussion on whether the capacity credit should be related to a tariff system for RES.

December 2015

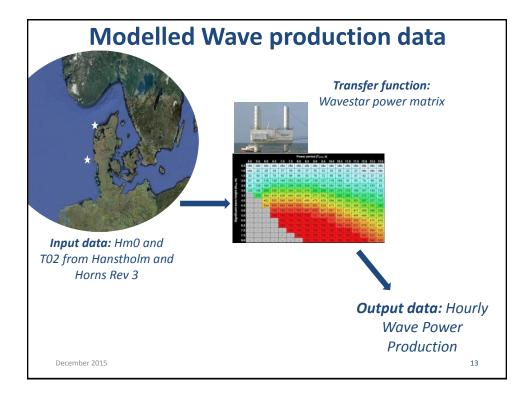
Factors that positively affect the capacity credit

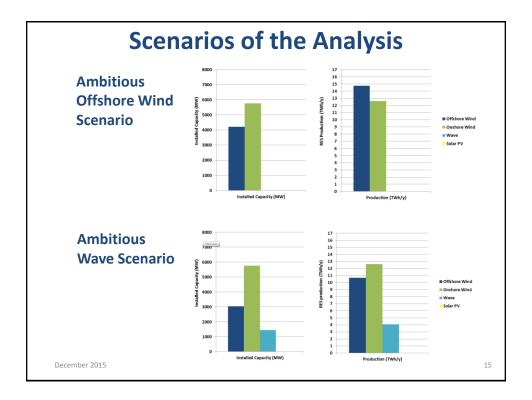
- ✓ Correlation among RES
- ✓ Correlation of RE production and demand
- ✓ Diversification of the RE mix (Average number of hours per year of null RE production)
- ✓ Penetration level of the RE mix in the system
- ✓ Average capacity factors of the RE technologies in the system

December 2015

Renewable Energies of the Analysis

Hour by hour distributions of the different RES have been based on actual measurements for year 2013 whenever possible.




December 2015

Scenarios of the Analysis

- i. Year2013
- ii. Ambitious Offshore Wind Scenario
- iii. Ambitious Onshore Wind Scenario
- iv. Ambitious Wave Scenario
- v. Ambitious Solar PV Scenario
- vi. Combined RES Scenario
- vii. Other scenarios: wind-only, wave-only, solar PV-only
- viii. Århus Wind-Solar PV Scenario
- Annual total RE production is kept constant at 27.3 TWh/y
- Production from offshore and onshore wind is kept equal or higher than 10.7 and 12.6 TWh/y, respectively
- Capacity factors of each technology type are defined by 2013 values.

December 2015

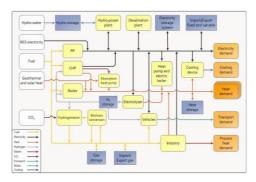
Selected study periods

"How well the aggregated production of variable RES aligns with periods during which the system faces a high risk of an outage, i.e. periods of peak demand?"

- i. Worst periods: Electricity demand is maximum and RE production is minimum
- ii. Peak demand periods: Electricity demand is maximum
- iii. Hi-RES periods: RE production is maximum
- iv. Best periods: RE production is maximum and demand is minimum

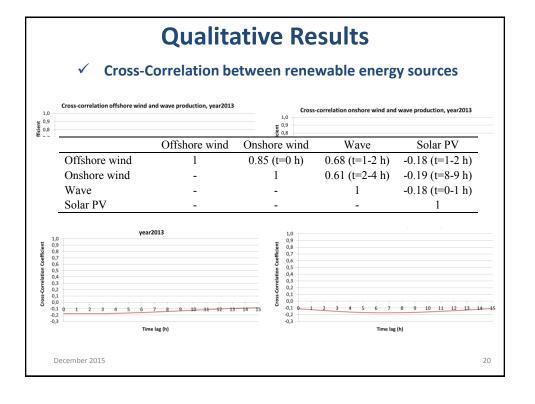
December 2015

Selected time spans


Nine different time spans are considered in the analysis of each study period. Intended to represent the contribution of RES on an hourly basis, intra-day basis, intra-week basis, weekly basis, monthly basis and season basis.

- · 1-hour averaged
- · 3-hour averaged
- · 6-hour averaged
- 12-hour averaged
- 24-hour / 1-day averaged
- · 3-hour averaged
- 7-day / 1-week averaged
- 1-month averaged
- · 3-month averaged

December 2015


Two System Approaches

- **1. Electricity-only system**: looks into the electricity sector as an isolated energy system
 - In-house model developed for the project
- Integrated energy system: approach is founded on a holistic system perspective that integrates the consumption in all energy sectors: transport, heat, industry and electricity.
 - EnergyPLAN Model, an advanced energy system's model

December 2015

Qualitative Results

✓ Cross-Correlation among RE production and demand

Scenarios	Cross-Correlation
Year 2013 [1271 : 3531 : 0 : 478.3 TWh/y]	0.13
Ambitious Offshore Wind Scenario [14.8 - 12.5 - 0 - 0 TWh/y]	0.11
Ambitious Onshore Wind Scenario [10.7 - 16.6 - 0 - 0 TWh/y]	0.12
Ambitious Wave Scenario [10.7 - 12.5 - 4 - 0 TWh/y]	0.12
Ambitious Solar PV Scenario [10.7 - 12.5 - 0 - 4.2 TWh/y]	0.16
Combined RES Scenario [4.1 - 9.5 - 8.1 - 5.6 TWh/y]	0.17
Offshore Wind – Only	0.07
Onshore Wind – Only	0.14
Wave – Only	0.07
Solar PV – Only	0.13
Heide et.al. (Århus) Scenario [0 - 21.7 - 0 - 5.6 TWh/y]	0.19

December 2015 2

Qualitative Results

- ✓ Diversification of the RE mix, as average number of h/year
 - i) with no production from RES
 - ii) with a production below 1% of maximum production,
 - iii) with a production below 5% of maximum production,

Hours per year when,	Offshore wind	Onshore wind	Wave Prod.	PV Prod.
Production = 0	4 h/y	0 h/y	45 h/y	4232 h/y
Production <1% max. prod.	163 h/y	309 h/y	132 h/y	4613 h/y
Production <5% max. prod.	877 h/y	1505 h/y	1094 h/y	5509 h/y

Hours per year when,	Off- and on- shore wind	Off- and on-shore wind, and wave	Off- and on-shore wind, and PV	Off- and on-shore wind, wave and PV
Production = 0	0 h/y	0 h/y	0 h/y	0 h/y
Production <1% max. prod.	519 h/y	251 h/y	376 h/y	190 h/y
Production <5% max. prod.	2786 h/y	2510 h/y	2424 h/y	2070 h/y

December 2015 22

Final Project Presentation: the Capacity

Credit of Wave and Solar PV

Qualitative Results

√ Capacity factors for RE technologies in Denmark are represented by 2013 values:

Offshore Wind: 40%

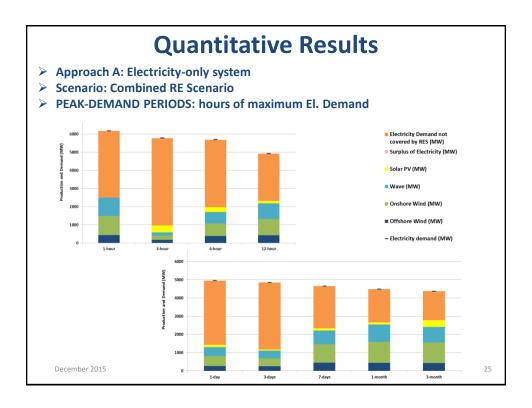
ii) Onshore Wind: 25%

iii) Wave: 32%

iv) Solar PV: 11%

Energinet.dk (Energinet.dk, 2011) and the Danish Energy Authority (Energistyrelsen, 2014) project an improvement of wind and wave harnessing technologies; and as such, their capacity factors are indeed expected to increase significantly, in 5% to 10%.

December 2015

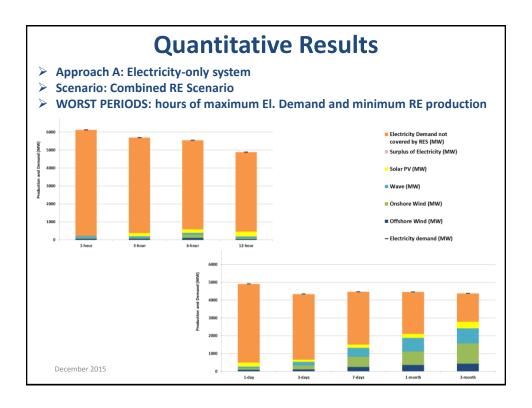

Quantitative Results

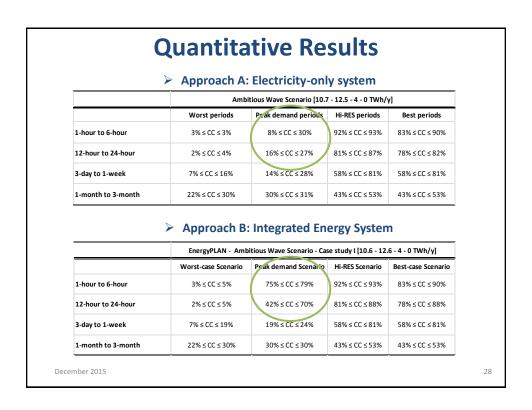
- > Approach A: Electricity-only system
- > Scenario: Combined RE Scenario
- > PEAK-DEMAND PERIODS: hours of maximum El. Demand

Time-frames	Date & Hour	All RES Combined	Offshore wind	Onshore wind	Wave	PV Prod.
1-hour	25-jan, 17:00	18%	37%	24%	34%	0%
3-hour	25-jan, 09:00	7%	15%	5%	6%	7%
6-hour	25-jan, 12:00	14%	33%	16%	22%	5%
12-hour	25-jan, 12:00	16%	36%	21%	29%	2%
24-hour / 1-day	25-jan, 00:00	10%	23%	12%	17%	2%
72-hour / 3-day	16-jan, 00:00	8%	22%	10%	14%	1%
168-hour / 1-week	22-jan, 00:00	17%	38%	23%	26%	2%
1-month	January	19%	37%	26%	32%	2%
3-month (year quarter)	Jan-Feb-March	20%	37%	26%	29%	6%

As a general trend CC_{Offshore wind} > CC_{Wave} > CC_{Onshore wind} > CC_{Solar PV}

December 2015


Quantitative Results


- > Approach A: Electricity-only system
- > Scenario: Combined RE Scenario
- > WORST PERIODS: hours of maximum El. Demand and minimum RE production

Time-frames	Date & Hour	All RES Combined	Offshore wind	Onshore wind	Wave	PV Prod.
1-hour	24-jan, 17:00	2%	6%	1%	3%	0%
3-hour	24-jan, 15:00	3%	6%	1%	3%	3%
6-hour	25-jan, 06:00	4%	10%	4%	4%	4%
12-hour	24-jan, 12:00	3%	5%	1%	3%	5%
24-hour / 1-day	24-jan, 00:00	3%	8%	2%	3%	4%
72-hour / 3-day	15-feb, 00:00	5%	9%	5%	7%	2%
168-hour / 1-week	12-feb, 00:00	11%	21%	13%	17%	3%
1-month	February	15%	30%	17%	26%	4%
3-month (year quarter)	Jan-Feb-March	20%	37%	26%	29%	6%

Again, CC_{Offshore wind} > CC_{Wave} > CC_{Onshore wind} > CC_{Solar PV}

December 2015

